The preferred conformation of cyclophosphamide

By means of the CNDO technique (Complete Neglect of Differential Overlap) (Pople \& Beveridge, 1970) we have examined the conformation of cyclophosphamide (Arnold \& Bourseaux, 1958). The starting point is the recent X-ray structural analysis of Garcia-Blanco \& Perales, 1972) and the relevant configuration is given in Fig. 1. Table 1 summarizes the angle input to a standard coordinate generating computer program (Quantum Chemistry Program Exchange No. 136, U. Indiana, Bloomington, Ind). In all calculations the ring structure is fixed. The carbonhydrogen bond length used is $1 \cdot 08 \AA$, the nitrogen-hydrogen bond, $1 \cdot 04 \AA$. The basic variable is rotation of the mustard group about the $\mathrm{P}-\mathrm{N}$ bond-defined by the 3-8-1516 dihedral angle (Fig. 1a) where the integers used represent the numbering system.

Calculations were made in four sets. In set I (Fig. 1b is a view down the $\mathrm{N}-\mathrm{P}$ bond) Cl_{1} points more or less back toward the ring and the 3-8-9-12 dihedral angle is

(lc)

Fig. 1. (a) Set I, 0° configuration. Distances in angstroms. (b) View down N-P bond for set I. (c) View down N-P bond for set IV.

Table 1. Angle definitions*.

B-C-D	$\theta_{13 C D}$	$\mathrm{A}-, \theta_{\text {a }} \mathrm{BCD}$	B-C-D	$\theta_{\text {BCD }}$	$A-, \theta_{\text {ABCD }}$
1-2-3	109.47				
2-3-4		1-, $180 \cdot 0$	8-15-16	$110 \cdot 0$	$3-180 \cdot 0$
2-3-5		$1-, 60.0$	8-15-17	$106 \cdot 8$	$3-$, 106.8
3-2-6		$4-, 60 \cdot 0$	15-17-18	119.	$8-, \quad 45 \cdot 0$
3-2-7		$4-,-60 \cdot 0$	8-15-28	$104 \cdot 7$	$3-$, -60.0
2-3-8		1-, - 60.0	15-17-19	118.0	8-, - 150.0
3-8-9	$120 \cdot 0$	$2-,-60 \cdot 0$	17-19-20	108.5	15-, 135.0
8-9-10	$109 \cdot 47$	$3-$-, $30 \cdot 0$	17-19-21	108.5	15-, 255.0
8-9-11		3-, $150 \cdot 0$	17-19-22	111.3	15-, 48.5
8-9-12		3-, -90.0	19-22-23	109.4	17-, 70.0
9-12-29		8 -, 60.0	19-22-24	109.4	17-, $190 \cdot 0$
9-12-14		8-, - $60 \cdot 0$	19-22-25	$110 \cdot 3$	17, -56.0
9-12-13		$8-, 180 \cdot 0$	22-25-26	109.47	19, 180.0
3-8-15	$120 \cdot 0$	$2-, 135 \cdot 0$	22-25-27	$109 \cdot 47$	19, 300.0

[^0]Table 2. Energies (in kcal and $k J$) relative to the lowest energy configuration (Set I, 180°).

$\theta^{\text {a }}$	Set ${ }^{\text {b }}$	Set ${ }^{\text {b }} \mathrm{II}$	Set ${ }^{\text {b }}$ III	$\theta^{\text {a }}$	Set ${ }^{\text {b }}$ IV
	kcal kJ	kcal kJ	kcal kJ		kcal k.J
0	$0.43 \quad 1.80$	$0.71 \quad 2.97$	$1 \cdot 17 \quad 4.90$	-90.0	90.5 $\quad 378.6$
60	$13.22 \quad 55.31$	$13.48 \quad 56.40$	8.9037 .23	-45.0	$64 \cdot 2 \quad 268.6$
120	$2.80 \quad 11.71$	$3 \cdot 2013.38$	3.9216 .40	$0 \cdot 0$	$3.6 \quad 15.06$
180	$\begin{array}{ll}0.0 & 0.0\end{array}$	$1 \cdot 52 \quad 6.36$	$\begin{array}{lll}0.96 & 4.02\end{array}$	$+45.0$	$10 \cdot 33 \quad 43.22$
240	$2.14 \quad 8.95$	$3 \cdot 62 \quad 15 \cdot 14$	$4.23 \quad 17.69$	$+90.0$	$90.4 \quad 378 \cdot 2$
300	$4.32 \quad 18.07$	$5 \cdot 10 \quad 21 \cdot 33$	$4.75 \quad 19.97$		

(a) See definition in Table 1. (b) defined in Text.
-90°. In set $\mathrm{II} \mathrm{Cl}_{1}$ (with the corresponding hydrogen atoms) is rotated through 120° so as to point away from the ring. This Cl_{1} configuration is maintained for set III but the 3-8-9-12 dihedral angle is changed to -45°. Finally in set IV the mustard group is arranged so as to assume maximum internal symmetry (Fig. 1c). In this configuration c_{2} and c_{12} point toward the ring and the two chlorine atoms point away from the ring. For sets I, II, III calculations were made for every 60° rotation (note the definition of θ in Fig. 1b) and in set IV for every 45°. For the first three sets of configurations the results are essentially similar (see Table 2). Noting that the 0° configuration is defined such that the plane given by atoms $3-8-9$ is essentially perpendicular to the six-membered ring for these sets, we find that the energy minima occur at 0° and 180° with significant barriers at 60° and 300°. The 0° minima is in keeping with the X -ray result; the 180° configuration would be expected to be close to the 0° configuration energetically, because of the very similar arrangement of the atoms. For set IV only the $0^{\circ}-45^{\circ}$ configurations are of sufficiently low energy to be populated at room temperature. These configurations are similar to the 0° configuration of the first three sets. The lowest energy of set IV is $3.60 \mathrm{kcal}(16.1 \mathrm{~kJ})$ above the lowest energy of the first three sets.

The mechanistic argument for the design of cyclophosphamide was that the electronegative phosphoryl linkage should remove enough of the nitrogen electron density to decrease the probability of the formation of a three membered ring ion-intermediate thought to be formed on loss of Cl^{-}. Calculations on normustine $\left(\mathrm{HN}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\right)$ show that the nitrogen electron density falls to a small extent only, from an excess of 0.223 electrons in normustine to an excess of 0.185 electrons in the lowest energy conformation of cyclophosphamide. Although this decrease is in the correct direction, its small size would suggest that some other mechanism could be responsible for deactivating the mustard part of the molecule. It is interesting to note that both oxygens and the ring N could all possibly participate in the activation of the mustard linkage since many of the rotations bring the chlorine atoms fairly close to these electronegative atoms.
The authors wish to thank the Research Corporation, Sigma Xi and the UNC Research Council for partial support of this work.

Department of Chemistry and UNC School of Medicine,
H. Cable
University of North Carolina,
A. Rauch
Chapel Hill, N.C. 27514, U.S.A.
L. Pedersen

January 25, 1973

REFERENCES

Arnold, H. \& Bourseaux, F. (1958). Angew. Chem., 70, 539-544.
Garcia-Blanco, S. \& Perales, A. (1972). Acta. Cryst., B28, 2647-2652.
Pople, J. A. \& Beveridge, D. L. (1970). Approximate Molecular Orbital Theory, 1st edn, New York: McGraw-Hill.

[^0]: * $\theta_{\text {atcd }}$ is the 3-8-15-16 dihedral angle. The dihedral angle is defined in such a way that for $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$ (where A is nearest the observer who is looking down the BC bond), θ is the angle (-- clockwise) between the projected bond $A B$ and projected bond $C D$. The Set $1,0^{\circ}$ configuration is given here. All other configurations are easily derived from this by simple changes of the dihedralangles.

